Seat	
No.	

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Max. Marks : 70
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) Q. No. 1 is compulsory. It should be solved in first

30 minutes in Answer Book Page No. 3. Each question carries one mark.
2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
3) Figures to the right indicate full marks.
4) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration : 30 Minutes

1. Choose the correct answer :
1) The particular integral of $\left(D^{3}+D\right) y=\cos x$ is
a) $\frac{x}{2} \cos x$
b) $\frac{x}{2} \sin x$
c) $-\frac{x}{2} \cos x$
d) $\frac{1}{2} \cos x$
2) Let $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s})\right\}=\mathrm{F}_{1}(\mathrm{t})$ and $\mathrm{L}^{-1}\left\{\phi_{2}(\mathrm{~s})\right\}=\mathrm{F}_{2}(\mathrm{t})$ then $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s}) . \phi_{2}(\mathrm{~s})\right\}=$
a) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d u$
b) $\int_{0}^{\infty} F_{1}(u) F_{2}(t-u) d u$
c) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d t$
d) $\int_{0}^{t} F_{1}(t) F_{2}(t-u) d u$
3) On putting $x=e^{z}$ the transformed differential equation of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{-1}$ is
a) $\left(D^{2}+1\right) y=e^{-2}$
b) $\left(D^{2}-1\right) y=x^{-1}$
c) $\left(D^{2}-2 D+1\right) y=e^{-2}$
d) $\left(D^{2}-1\right) y=e^{-2}$
4) $\frac{1}{D-m} X=$
a) $e^{-m x} \int e^{m x} x d x$
b) $e^{m x} \int e^{-m x} x d x$
c) $e^{m x} \int x d x$
d) $\int e^{-m x} x d x$
5) The solution of partial differential equation $x p+y q=2 z$ is
a) $\phi\left(\frac{x}{y}, \frac{y^{2}}{z}\right)=0$
b) $\phi\left(x y, y^{2} z\right)=0$
c) $\phi\left(\frac{x}{y}, \frac{y}{z^{2}}\right)=0$
d) None of these
P.T.O.
6) $L\left\{e^{2 t} \sinh t\right\}=$
a) $\frac{1}{s^{2}-2 s+3}$
b) $\frac{1}{s^{2}-4 s+3}$
c) $\frac{s-2}{s^{2}-4 s+3}$
d) $\frac{1}{s^{2}-4 s+5}$
7) If $L\{f(t)\}=\frac{2}{s^{3}} e^{-s}$ then $L\{f(2 t)\}=$
a) $\frac{16}{s^{3}} e^{-s / 2}$
b) $\frac{4}{\mathrm{~s}^{3}} \mathrm{e}^{-\mathrm{s}}$
c) $\frac{8}{s^{3}} e^{-2 / s}$
d) $\frac{8}{s^{3}} e^{-s / 2}$
8) In a Poisson distribution $p(x=2)=p(x=3)$ then the mean m is,
a) 2
b) 3
c) $2 / 3$
d) $3 / 2$
9) If 10% pens are defective and if there are 10 pens in the box then the probability that there is no defective pen in box is,
a) 0
b) 0.25
c) 0.35
d) 0.45
10) If $f(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ then the value of b_{n} is,
a) 0
b) π
c) $\frac{\pi}{2}$
d) $\frac{\pi^{2}}{2}$
11) The equations of lines of regression are $x+2 y=5$ and $2 x+3 y=8$, then mean \bar{x} and \bar{y} are
a) 1 and 2
b) 1 and 3
c) 2 and 3
d) 2 and 5
12) If a curve of the form $y=a x^{b}$ then the normal equations are
a) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log y \cdot x=\log a \cdot x+b \Sigma x^{2}$
b) $\Sigma y=n a+b \Sigma x, \Sigma x y=a \Sigma x+b \Sigma x^{2}$
c) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log x \cdot \log y=\log a \Sigma \log x+b \Sigma \log x)^{2}$
d) $\Sigma y=n a+b \Sigma x, \Sigma \log (x y)=\log a \Sigma \log x+b \Sigma(\log x)^{2}$
13) If $f(z)$ is analytic then which of the following is not true ?
a) $f^{\prime}(z)-u_{x}+i v_{x}$
b) $f^{\prime}(z)=u_{y}+i v_{y}$
c) $f^{\prime}(z)=u_{x}-i u_{y}$
d) $f^{\prime}(z)=v_{y}+i v_{x}$
14) The value of $\int_{c} \frac{z+2}{(z-3)(z-4)} d z$, where C is the circle $|z|=1$.
a) πi
b) $2 \pi i$
c) $6 \pi i$
d) 0

Seat

No.

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Marks : 56
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.
SECTION - I
2. Attempt any three :
$(3 \times 3=9)$
a) Solve: $\left(D^{2}-2 D+2\right) y=\sinh x+\sin \sqrt{2} x$.
b) Solve: $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}+\mathrm{x}^{2} \mathrm{y}=\frac{\mathrm{a}^{2} \mathrm{R}}{\mathrm{P}}(l-\mathrm{x})$ where a, R, P and l are constants, subject to the conditions $\mathrm{y}=\mathrm{0}, \frac{\mathrm{dy}}{\mathrm{dx}}=0$ at $\mathrm{x}=0$.
c) Solve $\frac{y^{4} z}{x} p+z x^{3} q=y^{4}$.
d) Find inverse Laplace transform of $\frac{5 s^{2}-7 s+17}{(s-1)\left(s^{2}+4\right)}$.
e) Find $L\left\{\int_{0}^{t} t e^{-4 t} \sin 3 t d t\right\}$.
3. Attempt any three :
a) Solve : $p^{2}+q^{2}=\frac{3 a^{2}}{z^{2}}$.
b) Solve: $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$.
c) Solve: $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$.
d) Find $\mathrm{L}^{-1}\left\{\tan ^{-1}\left(\frac{\mathrm{~s}+\mathrm{a}}{\mathrm{b}}\right)\right\}$.
e) Find $L\left\{\frac{\cosh 2 t \sin 2 t}{t}\right\}$.
4. Attempt any two :
a) Solve the following partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, u(x, 0)=4 e^{-3 x}$ by the method of separation of variables.
b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
c) Evaluate $\int_{0}^{\infty} e^{-2 t} t^{2} \sin 3 t d t$, by using Laplace transform.

SECTION - II

5. Solve any three of the following.
a) Evaluate $\int_{C} \frac{3 z^{2}+z}{z^{2}-1} d z$, where ' c ' is $|z|=2$.
b) Fit a Poisson distribution to the following data

x	$:$	0	1	2	3	4	Total
Frequency (F)	$:$	192	100	24	3	1	320

c) In an examination given by 500 candidates the average and standard deviation of marks obtained are 40 and 10 respectively. Assuming distribution of marks to be normal find approximately i) How many will pass if 50 is fixed as minimum ? ii) What should be minimum if 350 candidates are to pass ?
[given: For SNVZ, Area from $z=0$ to $z=1$ is 0.3413 and that from $z=0$ to $z=0.525$ is 0.2]
d) Find the Fourier series for $f(x)$, where $f(x)=x+x^{2}$ in ($-\pi \pi \quad$).
e) Fit a second degree parabola to the following data :

\mathbf{x}	$:$	1	2	3	4	5
\mathbf{y}	$:$	25	28	33	39	46

6. Solve any three of the following.
a) Obtain half range cosine series for $f(x)=x$ in the interval $(0,2)$.
b) From box containing 100 transistors 20 of which are defective. 10 are selected at random.

Find the probability that
i) All will be defective
ii) All are non-defective
iii) At least one is defective.
c) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d t$, along the line $y=\frac{x}{2}$.
d) Show that $u=\cos x$. cosh y is a harmonic function, find its harmonic conjugate.
e) The equations to the two lines of regression are $6 y=5 x+90$ and $15 x=8 y+130$. Find the mean of x and y and the coefficient of correlation.
7. Solve any two of the following.
a) Find the Fourier series for, $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
b) Find the equations of the lines of regression and also the coefficient of correlation from the following data.

\mathbf{x}	$:$	62	64	65	69	70	71	72	74
\mathbf{y}	$:$	126	125	139	145	165	152	180	208

c) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$, where ' c ' is $|z|=4$.

Set P

http://www.batuonline.com

Seat	
No.	

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Max. Marks : 70
Time : 2.30 p.m. to 5.30 p.m.

> N.B. : 1) Q. No. 1 is compulsory. It should be solved in first
> 30 minutes in Answer Book Page No. 3. Each question carries one mark.
> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
> 3) Figures to the right indicate full marks.
> 4) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration : 30 Minutes
Marks : 14

1. Choose the correct answer :
1) In a Poisson distribution $p(x=2)=p(x=3)$ then the mean m is,
a) 2
b) 3
c) $2 / 3$
d) $3 / 2$
2) If 10% pens are defective and if there are 10 pens in the box then the probability that there is no defective pen in box is,
a) 0
b) 0.25
c) 0.35
d) 0.45
3) If $f(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ then the value of b_{n} is,
a) 0
b) π
c) $\frac{\pi}{2}$
d) $\frac{\pi^{2}}{2}$
4) The equations of lines of regression are $x+2 y=5$ and $2 x+3 y=8$, then mean \bar{x} and \bar{y} are
a) 1 and 2
b) 1 and 3
c) 2 and 3
d) 2 and 5
5) If a curve of the form $y=a x^{b}$ then the normal equations are
a) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log y \cdot x=\log a \cdot x+b \Sigma x^{2}$
b) $\Sigma y=n a+b \Sigma x, \Sigma x y=a \Sigma x+b \Sigma x^{2}$
c) $\left.\Sigma \log y=n \log a+b \Sigma \log \mathrm{x}, \Sigma \log \mathrm{x} \cdot \log \mathrm{y}=\log \mathrm{a} \Sigma \log \mathrm{x}+\mathrm{b} \sum \log \mathrm{x}\right)^{2}$
d) $\Sigma \mathrm{y}=\mathrm{na}+\mathrm{b} \Sigma \mathrm{x}, \Sigma \log (\mathrm{xy})=\log \mathrm{a} \Sigma \log \mathrm{x}+\mathrm{b} \Sigma(\log \mathrm{x})^{2}$
6) If $f(z)$ is analytic then which of the following is not true ?
a) $f^{\prime}(z)-u_{x}+i v_{x}$
b) $f^{\prime}(z)=u_{y}+i v_{y}$
c) $f^{\prime}(z)=u_{x}-i u_{y}$
d) $f^{\prime}(z)=v_{y}+i v_{x}$
7) The value of $\int_{c} \frac{z+2}{(z-3)(z-4)} d z$, where C is the circle $|z|=1$.
a) πi
b) $2 \pi i$
c) $6 \pi i$
d) 0
8) The particular integral of $\left(D^{3}+D\right) y=\cos x$ is
a) $\frac{x}{2} \cos x$
b) $\frac{x}{2} \sin x$
c) $-\frac{x}{2} \cos x$
d) $\frac{1}{2} \cos x$
9) Let $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s})\right\}=\mathrm{F}_{1}(\mathrm{t})$ and $\mathrm{L}^{-1}\left\{\phi_{2}(\mathrm{~s})\right\}=\mathrm{F}_{2}(\mathrm{t})$ then $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s}) . \phi_{2}(\mathrm{~s})\right\}=$
a) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d u$
b) $\int_{0}^{\infty} F_{1}(u) F_{2}(t-u) d u$
c) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d t$
d) $\int_{0}^{t} F_{1}(t) F_{2}(t-u) d u$
10) On putting $x=e^{z}$ the transformed differential equation of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{-1}$ is
a) $\left(D^{2}+1\right) y=e^{-2}$
b) $\left(D^{2}-1\right) y=x^{-1}$
c) $\left(D^{2}-2 D+1\right) y=e^{-z}$
d) $\left(D^{2}-1\right) y=e^{-z}$
11) $\frac{1}{D-m} X=$
a) $e^{-m x} \int e^{m x} x d x$
b) $e^{m x} \int e^{-m x} x d x$
c) $e^{m x} \int x d x$
d) $\int e^{-m x} x d x$
12) The solution of partial differential equation $x p+y q=2 z$ is
a) $\phi\left(\frac{x}{y}, \frac{y^{2}}{z}\right)=0$
b) $\phi\left(x y, y^{2} z\right)=0$
c) $\phi\left(\frac{x}{y}, \frac{y}{z^{2}}\right)=0$
d) None of these
13) $L\left\{e^{2 t} \sinh t\right\}=$
a) $\frac{1}{s^{2}-2 s+3}$
b) $\frac{1}{s^{2}-4 s+3}$
c) $\frac{s-2}{s^{2}-4 s+3}$
d) $\frac{1}{s^{2}-4 s+5}$
14). If $L\{f(t)\}=\frac{2}{s^{3}} e^{-s}$ then $L\{f(2 t)\}=$
a) $\frac{16}{s^{3}} e^{-s / 2}$
b) $\frac{4}{s^{3}} e^{-s}$
c) $\frac{8}{s^{3}} e^{-2 / s}$
d) $\frac{8}{s^{3}} e^{-s / 2}$

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Marks : 56
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.
SECTION - I
2. Attempt any three :
$(3 \times 3=9)$
a) Solve: $\left(D^{2}-2 D+2\right) y=\sinh x+\sin \sqrt{2} x$.
b) Solve: $\frac{d^{2} y}{d x^{2}}+a^{2} y=\frac{a^{2} R}{P}(l-x)$ where a, R, P and l are constants, subject to the conditions $\mathrm{y}=0, \frac{\mathrm{dy}}{\mathrm{dx}}=0$ at $\mathrm{x}=0$.
c) Solve $\frac{y^{4} z}{x} p+z x^{3} q=y^{4}$.
d) Find inverse Laplace transform of $\frac{5 s^{2}-7 s+17}{(s-1)\left(s^{2}+4\right)}$.
e) Find $L\left\{\int_{0}^{t} t e^{-4 t} \sin 3 t d t\right\}$.
3. Attempt any three :
a) Solve : $p^{2}+q^{2}=\frac{3 a^{2}}{z^{2}}$.
b) Solve: $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$.
c) Solve: $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$.
d) Find $\mathrm{L}^{-1}\left\{\tan ^{-1}\left(\frac{\mathrm{~s}+\mathrm{a}}{\mathrm{b}}\right)\right\}$.
e) Find $L\left\{\frac{\cosh 2 \mathrm{t} \sin 2 \mathrm{t}}{\mathrm{t}}\right\}$.
4. Attempt any two :
a) Solve the following partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, u(x, 0)=4 e^{-3 x}$ by the method of separation of variables.
b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
c) Evaluate $\int_{0}^{\infty} e^{-2 t} t^{2} \sin 3 t d t$, by using Laplace transform.

SECTION - II

5. Solve any three of the following.
a) Evaluate $\int_{C} \frac{3 z^{2}+z}{z^{2}-1} d z$, where ' c ' is $|z|=2$.
b) Fit a Poisson distribution to the following data

x	$:$	0	1	2	3	4	Total
Frequency (F)	$:$	192	100	24	3	1	320

c) In an examination given by 500 candidates the average and standard deviation of marks obtained are 40 and 10 respectively. Assuming distribution of marks to be normal find approximately i) How many will pass if 50 is fixed as minimum ? ii) What should be minimum if 350 candidates are to pass ?
[given: For SNVZ, Area from $z=0$ to $z=1$ is 0.3413 and that from $z=0$ to $z=0.525$ is 0.2]
d) Find the Fourier series for $f(x)$, where $f(x)=x+x^{2}$ in ($-\pi \pi \quad$).
e) Fit a second degree parabola to the following data :

\mathbf{x}	$:$	1	2	3	4	5
\mathbf{y}	$:$	25	28	33	39	46

6. Solve any three of the following.
a) Obtain half range cosine series for $f(x)=x$ in the interval $(0,2)$.
b) From box containing 100 transistors 20 of which are defective. 10 are selected at random.

Find the probability that
i) All will be defective
ii) All are non-defective
iii) At least one is defective.
c) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d t$, along the line $y=\frac{x}{2}$.
d) Show that $u=\cos x$. cosh y is a harmonic function, find its harmonic conjugate.
e) The equations to the two lines of regression are $6 y=5 x+90$ and $15 x=8 y+130$. Find the mean of x and y and the coefficient of correlation.
7. Solve any two of the following.
a) Find the Fourier series for, $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
b) Find the equations of the lines of regression and also the coefficient of correlation from the following data.

\mathbf{x}	$:$	62	64	65	69	70	71	72	74
\mathbf{y}	$:$	126	125	139	145	165	152	180	208

c) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$, where ' c ' is $|z|=4$.

Set Q

http://www.batuonline.com

Seat	
No.	

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Max. Marks : 70
Time : 2.30 p.m. to 5.30 p.m.

> N.B. : 1) Q. No. 1 is compulsory. It should be solved in first
> 30 minutes in Answer Book Page No. 3. Each question carries one mark.
> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
> 3) Figures to the right indicate full marks.
> 4) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration : 30 Minutes
Marks : 14
($14 \times 1=14$)

1) The solution of partial differential equation $x p+y q=2 z$ is
a) $\phi\left(\frac{x}{y}, \frac{y^{2}}{z}\right)=0$
b) $\phi\left(x y, y^{2} z\right)=0$
c) $\phi\left(\frac{x}{y}, \frac{y}{z^{2}}\right)=0$
d) None of these
2) $L\left\{e^{2 t} \sinh t\right\}=$
a) $\frac{1}{s^{2}-2 s+3}$
b) $\frac{1}{s^{2}-4 s+3}$
c) $\frac{s-2}{s^{2}-4 s+3}$
d) $\frac{1}{s^{2}-4 s+5}$
3) If $L\{f(t)\}=\frac{2}{s^{3}} e^{-s}$ then $L\{f(2 t)\}=$
a) $\frac{16}{s^{3}} e^{-s / 2}$
b) $\frac{4}{s^{3}} e^{-s}$
c) $\frac{8}{s^{3}} e^{-2 / s}$
d) $\frac{8}{s^{3}} e^{-s / 2}$
4) In a Poisson distribution $p(x=2)=p(x=3)$ then the mean m is,
a) 2
b) 3
c) $2 / 3$
d) $3 / 2$
5) If 10% pens are defective and if there are 10 pens in the box then the probability that there is no defective pen in box is,
a) 0
b) 0.25
c) 0.35
d) 0.45
6) If $f(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ then the value of b_{n} is,
a) 0
b) π
c) $\frac{\pi}{2}$
d) $\frac{\pi^{2}}{2}$
P.T.O.
7) The equations of lines of regression are $x+2 y=5$ and $2 x+3 y=8$, then mean \bar{x} and \bar{y} are
a) 1 and 2
b) 1 and 3
c) 2 and 3
d) 2 and 5
8) If a curve of the form $y=a x^{b}$ then the normal equations are
a) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log y \cdot x=\log a \cdot x+b \Sigma x^{2}$
b) $\Sigma y=n a+b \Sigma x, \Sigma x y=a \Sigma x+b \Sigma x^{2}$
c) $\left.\Sigma \log y=n \log a+b \Sigma \log \mathrm{x}, \Sigma \log \mathrm{x} \cdot \log \mathrm{y}=\log \mathrm{a} \Sigma \log \mathrm{x}+\mathrm{b} \sum \log \mathrm{x}\right)^{2}$
d) $\Sigma y=n a+b \Sigma x, \Sigma \log (x y)=\log a \Sigma \log x+b \Sigma(\log x)^{2}$
9) If $f(z)$ is analytic then which of the following is not true ?
a) $f^{\prime}(z)-u_{x}+i v_{x}$
b) $f^{\prime}(z)=u_{y}+i v_{y}$
c) $f^{\prime}(z)=u_{x}-i u_{y}$
d) $f^{\prime}(z)=v_{y}+i v_{x}$
10) The value of $\int_{c} \frac{z+2}{(z-3)(z-4)} d z$, where C is the circle $|z|=1$.
a) πi
b) $2 \pi i$
c) $6 \pi i$
d) 0
11) The particular integral of $\left(D^{3}+D\right) y=\cos x$ is
a) $\frac{x}{2} \cos x$
b) $\frac{x}{2} \sin x$
c) $-\frac{x}{2} \cos x$
d) $\frac{1}{2} \cos x$
12) Let $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s})\right\}=\mathrm{F}_{1}(\mathrm{t})$ and $\mathrm{L}^{-1}\left\{\phi_{2}(\mathrm{~s})\right\}=\mathrm{F}_{2}(\mathrm{t})$ then $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s}) . \phi_{2}(\mathrm{~s})\right\}=$
a) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d u$
b) $\int_{0}^{\infty} F_{1}(u) F_{2}(t-u) d u$
c) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d t$
d) $\int_{0}^{t} F_{1}(t) F_{2}(t-u) d u$
13) On putting $x=e^{z}$ the transformed differential equation of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{-1}$ is
a) $\left(D^{2}+1\right) y=e^{-2}$
b) $\left(D^{2}-1\right) y=x^{-1}$
c) $\left(D^{2}-2 D+1\right) y=e^{-2}$
d) $\left(D^{2}-1\right) y=e^{-2}$
14) $\frac{1}{D-m} X=$
a) $e^{-m x} \int e^{m x} x d x$
b) $e^{m x} \int e^{-m x} x d x$
c) $e^{m x} \int x d x$
d) $\int e^{-m x} x d x$

Set R

Seat

No.

S.E. (Civil) (Part - II) (New - CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Marks : 56
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.
SECTION - I
2. Attempt any three :
$(3 \times 3=9)$
a) Solve: $\left(D^{2}-2 D+2\right) y=\sinh x+\sin \sqrt{2} x$.
b) Solve: $\frac{d^{2} y}{d x^{2}}+a^{2} y=\frac{a^{2} R}{P}(l-x)$ where a, R, P and l are constants, subject to the conditions $\mathrm{y}=\mathrm{0}, \frac{\mathrm{dy}}{\mathrm{dx}}=0$ at $\mathrm{x}=0$.
c) Solve $\frac{y^{4} z}{x} p+z x^{3} q=y^{4}$.
d) Find inverse Laplace transform of $\frac{5 s^{2}-7 s+17}{(s-1)\left(s^{2}+4\right)}$.
e) Find $L\left\{\int_{0}^{t} t e^{-4 t} \sin 3 t d t\right\}$.
3. Attempt any three :
a) Solve : $p^{2}+q^{2}=\frac{3 a^{2}}{z^{2}}$.
b) Solve: $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$.
c) Solve: $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$.
d) Find $\mathrm{L}^{-1}\left\{\tan ^{-1}\left(\frac{\mathrm{~s}+\mathrm{a}}{\mathrm{b}}\right)\right\}$.
e) Find $L\left\{\frac{\cosh 2 \mathrm{t} \sin 2 \mathrm{t}}{\mathrm{t}}\right\}$.
4. Attempt any two :
a) Solve the following partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, u(x, 0)=4 e^{-3 x}$ by the method of separation of variables.
b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
c) Evaluate $\int_{0}^{\infty} e^{-2 t} t^{2} \sin 3 t d t$, by using Laplace transform.

SECTION - II

5. Solve any three of the following.
a) Evaluate $\int_{C} \frac{3 z^{2}+z}{z^{2}-1} d z$, where ' c ' is $|z|=2$.
b) Fit a Poisson distribution to the following data

x	$:$	0	1	2	3	4	Total
Frequency (F)	$:$	192	100	24	3	1	320

c) In an examination given by 500 candidates the average and standard deviation of marks obtained are 40 and 10 respectively. Assuming distribution of marks to be normal find approximately i) How many will pass if 50 is fixed as minimum ? ii) What should be minimum if 350 candidates are to pass ?
[given: For SNVZ, Area from $z=0$ to $z=1$ is 0.3413 and that from $z=0$ to $z=0.525$ is 0.2]
d) Find the Fourier series for $f(x)$, where $f(x)=x+x^{2}$ in ($-\pi \pi \quad$).
e) Fit a second degree parabola to the following data :

\mathbf{x}	$:$	1	2	3	4	5
\mathbf{y}	$:$	25	28	33	39	46

6. Solve any three of the following.
a) Obtain half range cosine series for $f(x)=x$ in the interval $(0,2)$.
b) From box containing 100 transistors 20 of which are defective. 10 are selected at random.

Find the probability that
i) All will be defective
ii) All are non-defective
iii) At least one is defective.
c) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d t$, along the line $y=\frac{x}{2}$.
d) Show that $u=\cos x$. cosh y is a harmonic function, find its harmonic conjugate.
e) The equations to the two lines of regression are $6 y=5 x+90$ and $15 x=8 y+130$. Find the mean of x and y and the coefficient of correlation.
7. Solve any two of the following.
a) Find the Fourier series for, $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
b) Find the equations of the lines of regression and also the coefficient of correlation from the following data.

\mathbf{x}	$:$	62	64	65	69	70	71	72	74
\mathbf{y}	$:$	126	125	139	145	165	152	180	208

c) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$, where ' c ' is $|z|=4$.

Set R

Seat	
No.	

S.E. (Civil) (Part - II) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Max. Marks : 70
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) Q. No. 1 is compulsory. It should be solved in first

30 minutes in Answer Book Page No. 3. Each question carries one mark.
2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
3) Figures to the right indicate full marks.
4) Use of non-programmable calculator is allowed.

MCQ/Objective Type Questions

Duration : 30 Minutes
Marks : 14

1. Choose the correct answer :
1) If $f(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ then the value of b_{n} is,
a) 0
b) π
c) $\frac{\pi}{2}$
d) $\frac{\pi^{2}}{2}$
2) The equations of lines of regression are $x+2 y=5$ and $2 x+3 y=8$, then mean \bar{x} and \bar{y} are
a) 1 and 2
b) 1 and 3
c) 2 and 3
d) 2 and 5
3) If a curve of the form $y=a x^{b}$ then the normal equations are
a) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log y \cdot x=\log a \cdot x+b \Sigma x^{2}$
b) $\Sigma y=n a+b \Sigma x, \Sigma x y=a \Sigma x+b \Sigma x^{2}$
c) $\Sigma \log y=n \log a+b \Sigma \log x, \Sigma \log x \cdot \log y=\log a \Sigma \log x+b \Sigma \log x)^{2}$
d) $\Sigma y=n a+b \Sigma x, \Sigma \log (x y)=\log a \Sigma \log x+b \Sigma(\log x)^{2}$
4) If $f(z)$ is analytic then which of the following is not true ?
a) $f^{\prime}(z)-u_{x}+i v_{x}$
b) $f^{\prime}(z)=u_{y}+i v_{y}$
c) $f^{\prime}(z)=u_{x}-i u_{y}$
d) $f^{\prime}(z)=v_{y}+i v_{x}$
5) The value of $\int_{c} \frac{z+2}{(z-3)(z-4)} d z$, where C is the circle $|z|=1$.
a) πi
b) $2 \pi i$
c) $6 \pi i$
d) 0
P.T.O.
6) The particular integral of $\left(D^{3}+D\right) y=\cos x$ is
a) $\frac{x}{2} \cos x$
b) $\frac{x}{2} \sin x$
c) $-\frac{x}{2} \cos x$
d) $\frac{1}{2} \cos x$
7) Let $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s})\right\}=\mathrm{F}_{1}(\mathrm{t})$ and $\mathrm{L}^{-1}\left\{\phi_{2}(\mathrm{~s})\right\}=\mathrm{F}_{2}(\mathrm{t})$ then $\mathrm{L}^{-1}\left\{\phi_{1}(\mathrm{~s}) . \phi_{2}(\mathrm{~s})\right\}=$
a) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d u$
b) $\int_{0}^{\infty} F_{1}(u) F_{2}(t-u) d u$
c) $\int_{0}^{t} F_{1}(u) F_{2}(t-u) d t$
d) $\int_{0}^{t} F_{1}(t) F_{2}(t-u) d u$
8) On putting $x=e^{z}$ the transformed differential equation of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{-1}$ is
a) $\left(D^{2}+1\right) y=e^{-z}$
b) $\left(D^{2}-1\right) y=x^{-1}$
c) $\left(D^{2}-2 D+1\right) y=e^{-2}$
d) $\left(D^{2}-1\right) y=e^{-2}$
9) $\frac{1}{D-m} X=$
a) $e^{-m x} \int e^{m x} x d x$
b) $e^{m x} \int e^{-m x} x d x$
c) $e^{m x} \int x d x$
d) $\int e^{-m x} x d x$
10) The solution of partial differential equation $x p+y q=2 z$ is
a) $\phi\left(\frac{x}{y}, \frac{y^{2}}{z}\right)=0$
b) $\phi\left(x y, y^{2} z\right)=0$
c) $\phi\left(\frac{x}{y}, \frac{y}{z^{2}}\right)=0$
d) None of these
11) $L\left\{e^{2 t} \sinh t\right\}=$
a) $\frac{1}{s^{2}-2 s+3}$
b) $\frac{1}{s^{2}-4 s+3}$
c) $\frac{s-2}{s^{2}-4 s+3}$
d) $\frac{1}{s^{2}-4 s+5}$
12). If $L\{f(t)\}=\frac{2}{s^{3}} e^{-s}$ then $L\{f(2 t)\}=$
a) $\frac{16}{s^{3}} e^{-s / 2}$
b) $\frac{4}{s^{3}} e^{-s}$
c) $\frac{8}{s^{3}} e^{-2 / s}$
d) $\frac{8}{s^{3}} e^{-s / 2}$
12) In a Poisson distribution $p(x=2)=p(x=3)$ then the mean m is,
a) 2
b) 3
c) $2 / 3$
d) $3 / 2$
13) If 10% pens are defective and if there are 10 pens in the box then the probability that there is no defective pen in box is,
a) 0
b) 0.25
c) 0.35
d) 0.45

Seat
 No.

S.E. (Civil) (Part - II) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS - III

Day and Date : Wednesday, 28-11-2018
Marks : 56
Time : 2.30 p.m. to 5.30 p.m.
N.B. : 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of non-programmable calculator is allowed.
SECTION - I
2. Attempt any three :
$(3 \times 3=9)$
a) Solve: $\left(D^{2}-2 D+2\right) y=\sinh x+\sin \sqrt{2} x$.
b) Solve: $\frac{d^{2} y}{d x^{2}}+\mathrm{a}^{2} \mathrm{y}=\frac{\mathrm{a}^{2} \mathrm{R}}{\mathrm{P}}(l-\mathrm{x})$ where $\mathrm{a}, \mathrm{R}, \mathrm{P}$ and l are constants, subject to the conditions $\mathrm{y}=0, \frac{\mathrm{dy}}{\mathrm{dx}}=0$ at $\mathrm{x}=0$.
c) Solve $\frac{y^{4} z}{x} p+z x^{3} q=y^{4}$.
d) Find inverse Laplace transform of $\frac{5 s^{2}-7 s+17}{(s-1)\left(s^{2}+4\right)}$.
e) Find $L\left\{\int_{0}^{t} t e^{-4 t} \sin 3 t d t\right\}$.
3. Attempt any three :
a) Solve : $p^{2}+q^{2}=\frac{3 a^{2}}{z^{2}}$.
b) Solve: $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$.
c) Solve: $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$.
d) Find $\mathrm{L}^{-1}\left\{\tan ^{-1}\left(\frac{\mathrm{~s}+\mathrm{a}}{\mathrm{b}}\right)\right\}$.
e) Find $L\left\{\frac{\cosh 2 \mathrm{t} \sin 2 \mathrm{t}}{\mathrm{t}}\right\}$.
4. Attempt any two :
a) Solve the following partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, u(x, 0)=4 e^{-3 x}$ by the method of separation of variables.
b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
c) Evaluate $\int_{0}^{\infty} e^{-2 t} t^{2} \sin 3 t d t$, by using Laplace transform.

SECTION - II

5. Solve any three of the following.
a) Evaluate $\int_{C} \frac{3 z^{2}+z}{z^{2}-1} d z$, where ' c ' is $|z|=2$.
b) Fit a Poisson distribution to the following data

x	$:$	0	1	2	3	4	Total
Frequency (F)	$:$	192	100	24	3	1	320

c) In an examination given by 500 candidates the average and standard deviation of marks obtained are 40 and 10 respectively. Assuming distribution of marks to be normal find approximately i) How many will pass if 50 is fixed as minimum ? ii) What should be minimum if 350 candidates are to pass ?
[given: For SNVZ, Area from $z=0$ to $z=1$ is 0.3413 and that from $z=0$ to $z=0.525$ is 0.2]
d) Find the Fourier series for $f(x)$, where $f(x)=x+x^{2}$ in ($-\pi \pi \quad$).
e) Fit a second degree parabola to the following data :

\mathbf{x}	$:$	1	2	3	4	5
\mathbf{y}	$:$	25	28	33	39	46

6. Solve any three of the following.
a) Obtain half range cosine series for $f(x)=x$ in the interval $(0,2)$.
b) From box containing 100 transistors 20 of which are defective. 10 are selected at random.

Find the probability that
i) All will be defective
ii) All are non-defective
iii) At least one is defective.
c) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d t$, along the line $y=\frac{x}{2}$.
d) Show that $u=\cos x$. cosh y is a harmonic function, find its harmonic conjugate.
e) The equations to the two lines of regression are $6 y=5 x+90$ and $15 x=8 y+130$. Find the mean of x and y and the coefficient of correlation.
7. Solve any two of the following.
a) Find the Fourier series for, $f(x)=|\cos x|$ in the interval $(-\pi, \pi)$.
b) Find the equations of the lines of regression and also the coefficient of correlation from the following data.

\mathbf{x}	$:$	62	64	65	69	70	71	72	74
\mathbf{y}	$:$	126	125	139	145	165	152	180	208

c) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$, where ' c ' is $|z|=4$.

Set S

http://www.batuonline.com

