DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Semester Winter Examination – December - 2019

Branch: B.Tech Computer Science Subject:- Theory of Computation (BTCOC502)

Marks: 60

Sem.:- V

Date:- 11/12/2019

Time: - 3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly

Q.1. a) What is FA(Finite Automaton)? Explain with example. Elaborate on 'Automaton and complexity'. (06)

Q1. b) Convert following regular expression to their equivalent FA. (06)

- i) ba*b
- ii) (a+b) c
- iii) a (bc)

Q.2. a) Let G be the grammar:

i. $S \rightarrow 0B \mid 1A$

ii. $A \rightarrow 0 \mid 0S \mid 1AA$

iii. $B \rightarrow 1 \mid 1S \mid 0BB$

For the string 00110101and 11001010 find:

1) Left most derivation

2)Right most derivation (06)

Q.2. b) Explain Pumping Lemma and its applications. (06)

Q.3. a) Construct DFA for following NFA

(06)

Q.3. b) Discuss the Chomsky of each classification.	Hierard	chy of la	anguages	s by taking suitable example (06)
Q.4 a) Convert the given Gram $S \rightarrow ASB$	ımar int	o Chom	sky Norn	nal Form (CNF)
$A \rightarrow aAS \mid a \mid \epsilon$ $B \rightarrow SbS \mid A \mid bb$				(06)
Q.4. b) Explain:		A A		
 Recursively Enumerable L Greibach Normal Form 	anguag	e		(06)
Q.5. a) Explain Turing Mac	hine in	details :	along wit	
state its applications.			OXX/R XX/—	(06)
Q.5. b) Construct a PDA for language $L = \{ wcw^R \mid w = \{0, 1\}^* \}$ where w^R is the reverse of w.				(06)
		12000 C		
Q.6. a) Explain Random acce	ss Turii	ng Mac	hines and	d Non deterministic Turing
Machines.			A. D. O. O.	(06)
Q.6. b) Define Mealy machine	and M			10.6 5.73
Convert following Mealy machine		/ ~/ / / / / / / / / / / / / / / / / /		
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		In	4, U A - W - W - W	y
	State	a	b	
	Q_0	$Q_{2,1}$	$Q_{3,0}$	
	Q_1	Q _{0,0}	$Q_{1,1}$	
	\mathbb{Q}_2	Q _{1,1}	$\mathbf{Q}_{2,0}$	
	Q_3	Q _{2,0}	$Q_{0,1}$	
	72300 2300	pliot,		(06)
	Pap	oer Er	ıd	
	3,50			